世界上最迷人的数学难题

作者: 来源: 发布时间:2017年11月04日 点击数:

随着我国数学科研事业在近几年一直持续迅猛发展,数学爱好者规模日益壮大.都说明数学正在越来越受到人们的关注,这是一个非常可喜的现象.正是基于这种考虑,数学工作者不失时机地推出了“世界最迷人的数学难题”评选活动.之所以称之为“迷人”,是因为无数数学家看见她们比看见漂亮美眉还痴迷,就象练武之人见到了武功秘籍.

现在由“世界最迷人的数学难题”评选委员会宣布评选结果.此次评选的三等奖获得者三名,她们分别是:

“几何尺规作图问题” 获奖理由:这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺.“几何尺规作图问题”包括以下四个问题 1.化圆为方—求作一正方形使其面积等于一已知圆;2.三等分任意角; 3.倍立方—求作一立方体使其体积是一已知立方体的二倍. 4.做正17边形. 以上4个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的.第4个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正17边形刻在他的墓碑上,但后来他的墓碑上并没有刻上17边形,而是17角星,因为负责刻碑的雕刻家认为,正17边形和圆太像了,大家一定分辨不出来.

“蜂窝猜想” 获奖理由:4世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表.他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的.他的这一猜想称为蜂窝猜想,但这一猜想一直没有人能证明.1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正六边形的周长是最小的.但如果多边形的边是曲线时,会发生什么情况呢?陶斯认为,正六边形与其他任何形状的图形相比,它的周长最小,但他不能证明这一点.而黑尔在考虑了周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长最小.他已将19页的证明过程放在因特网上,许多专家都已看到了这一证明,认为黑尔的证明是正确的.

“孪生素数猜想” 获奖理由:1849年,波林那克提出孪生素生猜想(the conjecture of twin primes),即猜测存在无穷多对孪生素数.孪生素数即相差2的一对素数.例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孪生素数.1966年,中国数学家陈景润在这方面得到最好的结果:存在无穷多个素数p,使p+2是不超过两个素数之积.孪生素数猜想至今仍未解决,但一般人都认为是正确的.

此次评选的二等奖获得者二名,她们分别是:

 “费马最后定理” 获奖理由:在360多年前的某一天,费马突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内容是有关一个方程式 xn +yn = zn 的正整数解的问题,当n=2时就是我们所熟知的毕氏定理(中国古代又称勾股弦定理). 费马声称当n>2时,就找不到满足xn +yn = zn 的整数解,例如:方程式 x3 +y3 = z3 就无法找到整数解. 始作俑者的费马也因此留下了千古的难题,300多年来无数的数学家尝试要去解决这个难题却都徒劳无功.这个号称世纪难题的费马最后定理也就成了数学界的心头大患,极欲解之而后快. 不过这个300多年的数学悬案终于解决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决.其实威利斯是利用20世纪过去30年来抽象数学发展的结果加以证明.“四色猜想” 获奖理由:1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色.” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题.世界上许多一流的数学家都纷纷参加了四色猜想的大会战. 1976年,美国数学家阿贝尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明.四色猜想的计算机证明,轰动了世界.

此次评选的一等奖获得者一名,她是:

“哥德巴赫猜想”  获奖理由:公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个大于等于6的偶数,都可以表示成两个奇质数之和. (b) 任何一个大于等于9的奇数,都可以表示成三个奇质数之和. 从此,这道著名的数学难题引起了世界上成千上万数学家的注意.200年过去了,没有人证明它.哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”. 目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理(Chens Theorem) “任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.” 通常都简称这个结果为大偶数可表示为 “1 + 2”的形式.我们说“哥德巴赫猜想”无愧于“世界最迷人的数学难题”第一的称号.她用貌似平凡的外表,吸引无数数学家为她神魂颠倒、寝食难安.

 

 

[关闭窗口] [添加收藏]
更多
上一篇:浅谈初中生代数学习[ 11-04 ]
下一篇:初中数学教学情感教育[ 11-04 ]